Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
1.
J Chromatogr B Analyt Technol Biomed Life Sci ; 1215: 123579, 2023 Jan 15.
Article in English | MEDLINE | ID: covidwho-2239446

ABSTRACT

Recombinant SARS-CoV-2 trimeric spike protein produced by mammalian cell culture is a potential candidate for a COVID-19 vaccine. However, this protein is much larger than most typical biopharmaceutical proteins and its large-scale manufacture is therefore challenging. Particularly, its purification using resin-based chromatography is difficult as the diffusive transport of this protein to and from its binding site within the pores of the stationary phase particles is slow. Therefore, very low flow rates need to be used during binding and elution, and this slows down the purification process. Also, due to its large size, the binding capacity of this protein on resin-based media is low. Membrane chromatography is an efficient and scalable technique for purifying biopharmaceuticals. The predominant mode of solute transport in a membrane is convective and hence it is considered better than resin-based chromatography for purifying large proteins. In this paper, we propose a membrane chromatography-based purification method for fast and scalable manufacture of recombinant SARS-CoV-2 trimeric spike protein. A combination of cation exchange z2 laterally-fed membrane chromatography and size exclusion chromatography was found to be suitable for obtaining a homogeneous spike protein sample from mammalian cell culture supernatant. The proposed method is both fast and scalable and could be explored as a method for manufacturing vaccine grade spike protein.


Subject(s)
Recombinant Proteins , Spike Glycoprotein, Coronavirus , COVID-19 Vaccines , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/biosynthesis , Spike Glycoprotein, Coronavirus/isolation & purification , Recombinant Proteins/biosynthesis , Recombinant Proteins/isolation & purification
2.
Sci Rep ; 12(1): 2505, 2022 02 15.
Article in English | MEDLINE | ID: covidwho-1747189

ABSTRACT

Mpro, the main protease of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is essential for the viral life cycle. Accordingly, several groups have performed in silico screens to identify Mpro inhibitors that might be used to treat SARS-CoV-2 infections. We selected more than five hundred compounds from the top-ranking hits of two very large in silico screens for on-demand synthesis. We then examined whether these compounds could bind to Mpro and inhibit its protease activity. Two interesting chemotypes were identified, which were further evaluated by characterizing an additional five hundred synthesis on-demand analogues. The compounds of the first chemotype denatured Mpro and were considered not useful for further development. The compounds of the second chemotype bound to and enhanced the melting temperature of Mpro. The most active compound from this chemotype inhibited Mpro in vitro with an IC50 value of 1 µM and suppressed replication of the SARS-CoV-2 virus in tissue culture cells. Its mode of binding to Mpro was determined by X-ray crystallography, revealing that it is a non-covalent inhibitor. We propose that the inhibitors described here could form the basis for medicinal chemistry efforts that could lead to the development of clinically relevant inhibitors.


Subject(s)
Coronavirus 3C Proteases/antagonists & inhibitors , Protease Inhibitors/chemistry , SARS-CoV-2/enzymology , Binding Sites , COVID-19/pathology , COVID-19/virology , Coronavirus 3C Proteases/genetics , Coronavirus 3C Proteases/metabolism , Crystallography, X-Ray , Humans , Molecular Conformation , Molecular Docking Simulation , Nitriles/chemistry , Nitriles/metabolism , Nitriles/pharmacology , Protease Inhibitors/metabolism , Protease Inhibitors/pharmacology , Quinazolines/chemistry , Quinazolines/metabolism , Quinazolines/pharmacology , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , SARS-CoV-2/isolation & purification , SARS-CoV-2/physiology , Virus Replication/drug effects
3.
Int J Biol Macromol ; 200: 428-437, 2022 Mar 01.
Article in English | MEDLINE | ID: covidwho-1633983

ABSTRACT

Nucleocapsid protein (N protein) is the primary antigen of the virus for development of sensitive diagnostic assays of COVID-19. In this paper, we demonstrate the significant impact of dimerization of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) N-protein on sensitivity of enzyme-linked immunosorbent assay (ELISA) based diagnostics. The expressed purified protein from E. coli is composed of dimeric and monomeric forms, which have been further characterized using biophysical and immunological techniques. Indirect ELISA indicated elevated susceptibility of the dimeric form of the nucleocapsid protein for identification of protein-specific monoclonal antibody as compared to the monomeric form. This finding also confirmed with the modelled structure of monomeric and dimeric nucleocapsid protein via HHPred software and its solvent accessible surface area, which indicates higher stability and antigenicity of the dimeric type as compared to the monomeric form. The sensitivity and specificity of the ELISA at 95% CI are 99.0% (94.5-99.9) and 95.0% (83.0-99.4), respectively, for the highest purified dimeric form of the N protein. As a result, using the highest purified dimeric form will improve the sensitivity of the current nucleocapsid-dependent ELISA for COVID-19 diagnosis, and manufacturers should monitor and maintain the monomer-dimer composition for accurate and robust diagnostics.


Subject(s)
COVID-19 Testing/methods , Coronavirus Nucleocapsid Proteins/chemistry , Enzyme-Linked Immunosorbent Assay/methods , SARS-CoV-2/immunology , Antibodies, Viral/immunology , Circular Dichroism , Coronavirus Nucleocapsid Proteins/biosynthesis , Coronavirus Nucleocapsid Proteins/immunology , Coronavirus Nucleocapsid Proteins/isolation & purification , Dimerization , Epitopes/chemistry , Escherichia coli/genetics , Humans , Immunoglobulin G/immunology , Models, Molecular , Phosphoproteins/biosynthesis , Phosphoproteins/chemistry , Phosphoproteins/immunology , Phosphoproteins/isolation & purification , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/immunology , Recombinant Proteins/isolation & purification , Sensitivity and Specificity
4.
BMC Nephrol ; 23(1): 30, 2022 01 14.
Article in English | MEDLINE | ID: covidwho-1639331

ABSTRACT

BACKGROUND: AKI is related to severe adverse outcomes and mortality with Coronavirus Disease 2019 (COVID-19) patients, that early diagnosed and intervened is imperative. Neutrophil gelatinase-associated lipocalin (NGAL) is one of the most promising biomarkers for detection of acute kidney injury (AKI), but current detection methods are inadequacy, so more rapid, convenient and accuracy methods are needed to detect NGAL for early diagnosis of AKI. Herein, we established a rapid, reliable and accuracy lateral flow immunoassay (LFIA) based on europium nanoparticles (EU-NPS) for the detection of NGAL in human urine specimens. METHODS: A double-antibody sandwich immunofluorescent assay using europium doped nanoparticles was employed and the NGAL monoclonal antibodies (MAbs) conjugate as labels were generated by optimizing electric fusion parameters. Eighty-three urine samples were used to evaluate the clinical application efficiency of this method. RESULTS: The quantitative detection range of NGAL in AKI was 1-3000 ng/mL, and the detection sensitization was 0.36 ng/mL. The coefficient of variation (CV) of intra-assay and inter-assay were 2.57-4.98 % and 4.11-7.83 %, respectively. Meanwhile, the correlation coefficient between europium nanoparticles-based lateral fluorescence immunoassays (EU-NPS-LFIA) and ARCHITECT analyzer was significant (R2 = 0.9829, n = 83, p < 0.01). CONCLUSIONS: Thus, a faster and easier operation quantitative assay of NGAL for AKI has been established, which is very important and meaningful to diagnose the early AKI, suggesting that the assay can provide an early warning of final outcome of disease.


Subject(s)
Acute Kidney Injury/diagnosis , Europium , Fluoroimmunoassay/methods , Lipocalin-2/urine , Metal Nanoparticles , Acute Kidney Injury/virology , Animals , Antibodies, Monoclonal/isolation & purification , COVID-19/complications , Enzyme-Linked Immunosorbent Assay , Humans , Lipocalin-2/immunology , Mice , Recombinant Proteins/isolation & purification , Reproducibility of Results , SARS-CoV-2
5.
J Med Chem ; 64(19): 14332-14343, 2021 10 14.
Article in English | MEDLINE | ID: covidwho-1621195

ABSTRACT

In addition to a variety of viral-glycoprotein receptors (e.g., heparan sulfate, Niemann-Pick C1, etc.), dendritic cell-specific intercellular adhesion molecule-3-grabbing nonintegrin (DC-SIGN), from the C-type lectin receptor family, plays one of the most important pathogenic functions for a wide range of viruses (e.g., Ebola, human cytomegalovirus (HCMV), HIV-1, severe acute respiratory syndrome coronavirus 2, etc.) that invade host cells before replication; thus, its inhibition represents a relevant extracellular antiviral therapy. We report two novel p-tBu-calixarene glycoclusters 1 and 2, bearing tetrahydroxamic acid groups, which exhibit micromolar inhibition of soluble DC-SIGN binding and provide nanomolar IC50 inhibition of both DC-SIGN-dependent Jurkat cis-cell infection by viral particle pseudotyped with Ebola virus glycoprotein and the HCMV-gB-recombinant glycoprotein interaction with monocyte-derived dendritic cells expressing DC-SIGN. A unique cooperative involvement of sugar, linker, and calixarene core is likely behind the strong avidity of DC-SIGN for these low-valent systems. We claim herein new promising candidates for the rational development of a large spectrum of antiviral therapeutics.


Subject(s)
Calixarenes/chemistry , Cell Adhesion Molecules/antagonists & inhibitors , Glycoconjugates/metabolism , Glycoproteins/antagonists & inhibitors , Hydroxamic Acids/chemistry , Lectins, C-Type/antagonists & inhibitors , Phenols/chemistry , Receptors, Cell Surface/antagonists & inhibitors , Viral Proteins/antagonists & inhibitors , Antiviral Agents/chemistry , Antiviral Agents/metabolism , Antiviral Agents/pharmacology , Cell Adhesion Molecules/metabolism , Cell Line , Cytomegalovirus/metabolism , Dendritic Cells/cytology , Dendritic Cells/metabolism , Ebolavirus/physiology , Glycoconjugates/chemistry , Glycoconjugates/pharmacology , Glycoproteins/genetics , Glycoproteins/metabolism , Humans , Jurkat Cells , Lectins, C-Type/metabolism , Models, Biological , Protein Binding , Receptors, Cell Surface/metabolism , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , Viral Proteins/genetics , Viral Proteins/metabolism
6.
PLoS One ; 16(11): e0257089, 2021.
Article in English | MEDLINE | ID: covidwho-1523422

ABSTRACT

Recombinant production of viral proteins can be used to produce vaccine antigens or reagents to identify antibodies in patient serum. Minimally, these proteins must be correctly folded and have appropriate post-translation modifications. Here we report the production of the SARS-CoV-2 spike protein Receptor Binding Domain (RBD) in the green algae Chlamydomonas. RBD fused to a fluorescent reporter protein accumulates as an intact protein when targeted for ER-Golgi retention or secreted from the cell, while a chloroplast localized version is truncated. The ER-retained RBD fusion protein was able to bind the human ACE2 receptor, the host target of SARS-CoV-2, and was specifically out-competed by mammalian cell-produced recombinant RBD, suggesting that the algae produced proteins are sufficiently post-translationally modified to act as authentic SARS-CoV-2 antigens. Because algae can be grown at large scale very inexpensively, this recombinant protein may be a low cost alternative to other expression platforms.


Subject(s)
Chlamydomonas reinhardtii , Protein Interaction Domains and Motifs , Recombinant Proteins , Spike Glycoprotein, Coronavirus , Chlamydomonas reinhardtii/genetics , Chlamydomonas reinhardtii/metabolism , Cloning, Molecular , Humans , Protein Interaction Domains and Motifs/genetics , Protein Interaction Domains and Motifs/immunology , Recombinant Proteins/genetics , Recombinant Proteins/immunology , Recombinant Proteins/isolation & purification , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/isolation & purification
7.
Bull Exp Biol Med ; 172(1): 53-56, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1520385

ABSTRACT

The antiviral activity of recombinant human IFN-lambda type 1 (IFNλ-1) against culture strain of SARS-CoV-2 virus was determined by infecting a highly sensitive VeroE6 coronavirus cell culture after preincubation test (the cell monolayer was incubated with 4-fold dilutions of IFNλ-1 in a concentration range of 0.16-42,500 ng/ml in a culture medium for 12 h at 37°C) and without preincubation (simultaneous addition of different concentrations of IFNλ-1 and SARS-CoV-2 infection in a dose of 102 TCID50). The created recombinant human IFNλ-1 demonstrated obvious antiviral activity against SARS-CoV-2 virus in vitro. In the tests with and without preincubation, IFNλ-1 exhibited significant activity, although somewhat lower in variant with simultaneous addition of IFNλ-1 and virus to the cell culture. It should be noted that the antiviral effect of IFNλ-1 was observed in a wide range of concentrations.


Subject(s)
Antiviral Agents/pharmacology , Interferons/pharmacology , Recombinant Proteins/pharmacology , SARS-CoV-2/drug effects , Viral Load/drug effects , Virus Replication/drug effects , Animals , Antiviral Agents/isolation & purification , COVID-19/virology , Chlorocebus aethiops , Cloning, Molecular , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Humans , Interferons/biosynthesis , Interferons/isolation & purification , Recombinant Proteins/biosynthesis , Recombinant Proteins/isolation & purification , SARS-CoV-2/genetics , SARS-CoV-2/growth & development , Vero Cells , Viral Load/genetics , COVID-19 Drug Treatment
8.
Chem Biol Drug Des ; 99(2): 233-246, 2022 02.
Article in English | MEDLINE | ID: covidwho-1488186

ABSTRACT

Coronavirus (SARS-CoV-2) as a global pandemic has attracted the attention of many scientific centers to find the right treatment. We expressed and purified the recombinant receptor-binding domain (RBD) of the SARS-CoV-2 spike (S) protein, and specific RBD aptamers were designed using SELEX method. RNAi targeting nucleocapsid phosphoprotein was synthesized and human lung cells were inoculated with aptamer-functionalized lipid nanoparticles (LNPs) containing RNAi. The results demonstrated that RBD aptamer having KD values of 0.290 nm possessed good affinity. Based on molecular docking and efficacy prediction analysis, siRNA molecule was showed the best action. LNPs were appropriately functionalized by aptamer and contained RNAi molecules. Antiviral assay using q-PCR and ELISA demonstrated that LNP functionalized with 35 µm Apt and containing 30 nm RNAi/ml of cell culture had the best antiviral activity compared to other concentrations. Applied aptamer in the nanocarrier has two important functions. First, it can deliver the drug (RNAi) to the surface of epithelial cells. Second, by binding to the SARS-CoV-2 spike protein, it inhibits the virus entrance into cells. Our data reveal an interaction between the aptamer and the virus, and RNAi targeted the virus RNA. CT scan and the clinical laboratory tests in a clinical case study, a 36-year old man who presented with severe SARS-CoV-2, demonstrated that inhalation of 10 mg Apt-LNPs-RNAi nebulized/day for six days resulted in an improvement in consolidation and ground-glass opacity in lungs on the sixth day of treatment. Our findings suggest the treatment of SARS-CoV-2 infection through inhalation of Aptamer-LNPs-RNAi.


Subject(s)
Antiviral Agents/administration & dosage , Aptamers, Nucleotide/chemistry , COVID-19 Drug Treatment , Liposomes/chemistry , Nanoparticles/chemistry , RNA, Small Interfering/administration & dosage , Spike Glycoprotein, Coronavirus/metabolism , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/pharmacology , Administration, Inhalation , Adult , Alanine/analogs & derivatives , Alanine/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/metabolism , Antiviral Agents/pharmacology , COVID-19/pathology , COVID-19/virology , Cell Line , Humans , Lung/diagnostic imaging , Lung/pathology , Male , Protein Domains/genetics , RNA Interference , RNA, Small Interfering/chemistry , RNA, Small Interfering/metabolism , RNA, Small Interfering/pharmacology , Recombinant Proteins/biosynthesis , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , SARS-CoV-2/isolation & purification , SARS-CoV-2/metabolism , SELEX Aptamer Technique , Severity of Illness Index , Spike Glycoprotein, Coronavirus/antagonists & inhibitors , Spike Glycoprotein, Coronavirus/genetics , Viral Load/drug effects
9.
Biochemistry (Mosc) ; 86(10): 1275-1287, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1476404

ABSTRACT

A new platform for creating anti-coronavirus epitope vaccines has been developed. Two loop-like epitopes with lengths of 22 and 42 amino acid residues were selected from the receptor-binding motif of the Spike protein from the SARS-CoV-2 virus that participate in a large number of protein-protein interactions in the complexes with ACE2 and neutralizing antibodies. Two types of hybrid proteins, including one of the two selected epitopes, were constructed. To fix conformation of the selected epitopes, an approach using protein scaffolds was used. The homologue of Rop protein from the Escherichia coli ColE1 plasmid containing helix-turn-helix motif was used as an epitope scaffold for the convergence of C- and N-termini of the loop-like epitopes. Loop epitopes were inserted into the turn region. The conformation was additionally fixed by a disulfide bond formed between the cysteine residues present within the epitopes. For the purpose of multimerization, either aldolase from Thermotoga maritima, which forms a trimer in solution, or alpha-helical trimerizer of the Spike protein from SARS-CoV-2, was attached to the epitopes incorporated into the Rop-like protein. To enable purification on the heparin-containing sorbents, a short fragment from the heparin-binding hemagglutinin of Mycobacterium tuberculosis was inserted at the C-terminus of the hybrid proteins. All the obtained proteins demonstrated high level of immunogenicity after triplicate parenteral administration to mice. Sera from the mice immunized with both aldolase-based hybrid proteins and the Spike protein SARS-CoV-2 trimerizer-based protein with a longer epitope interacted with both the inactivated SARS-CoV-2 virus and the Spike protein receptor-binding domain at high titers.


Subject(s)
COVID-19 Vaccines , COVID-19 , Epitopes , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Animals , COVID-19/genetics , COVID-19/immunology , COVID-19/prevention & control , COVID-19 Vaccines/genetics , COVID-19 Vaccines/immunology , COVID-19 Vaccines/isolation & purification , COVID-19 Vaccines/pharmacology , Epitopes/genetics , Epitopes/immunology , Epitopes/isolation & purification , Epitopes/pharmacology , Female , Humans , Mice , Mice, Inbred BALB C , Recombinant Proteins/genetics , Recombinant Proteins/immunology , Recombinant Proteins/isolation & purification , Recombinant Proteins/pharmacology , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/isolation & purification , Spike Glycoprotein, Coronavirus/pharmacology
10.
Nat Commun ; 12(1): 6103, 2021 10 20.
Article in English | MEDLINE | ID: covidwho-1475296

ABSTRACT

Multiple SARS-CoV-2 variants of concern (VOCs) have been emerging and some have been linked to an increase in case numbers globally. However, there is yet a lack of understanding of the molecular basis for the interactions between the human ACE2 (hACE2) receptor and these VOCs. Here we examined several VOCs including Alpha, Beta, and Gamma, and demonstrate that five variants receptor-binding domain (RBD) increased binding affinity for hACE2, and four variants pseudoviruses increased entry into susceptible cells. Crystal structures of hACE2-RBD complexes help identify the key residues facilitating changes in hACE2 binding affinity. Additionally, soluble hACE2 protein efficiently prevent most of the variants pseudoviruses. Our findings provide important molecular information and may help the development of novel therapeutic and prophylactic agents targeting these emerging mutants.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , COVID-19/virology , Protein Interaction Domains and Motifs/genetics , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Amino Acid Sequence , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/isolation & purification , Angiotensin-Converting Enzyme 2/ultrastructure , Animals , Cell Line, Tumor , Crystallography, X-Ray , HEK293 Cells , Humans , Molecular Dynamics Simulation , Mutation , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Recombinant Proteins/ultrastructure , SARS-CoV-2/genetics , Sf9 Cells , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/isolation & purification , Spike Glycoprotein, Coronavirus/ultrastructure , Spodoptera , Surface Plasmon Resonance , Virus Attachment , Virus Internalization
11.
J Biol Chem ; 297(4): 101238, 2021 10.
Article in English | MEDLINE | ID: covidwho-1433455

ABSTRACT

The D614G mutation in the spike protein of SARS-CoV-2 alters the fitness of the virus, leading to the dominant form observed in the COVID-19 pandemic. However, the molecular basis of the mechanism by which this mutation enhances fitness is not clear. Here we demonstrated by cryo-electron microscopy that the D614G mutation resulted in increased propensity of multiple receptor-binding domains (RBDs) in an upward conformation poised for host receptor binding. Multiple substates within the one RBD-up or two RBD-up conformational space were determined. According to negative staining electron microscopy, differential scanning calorimetry, and differential scanning fluorimetry, the most significant impact of the mutation lies in its ability to eliminate the unusual cold-induced unfolding characteristics and to significantly increase the thermal stability under physiological pH. The D614G spike variant also exhibited exceptional long-term stability when stored at 37 °C for up to 2 months. Our findings shed light on how the D614G mutation enhances the infectivity of SARS-CoV-2 through a stabilizing mutation and suggest an approach for better design of spike protein-based conjugates for vaccine development.


Subject(s)
SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/metabolism , COVID-19/pathology , COVID-19/virology , Calorimetry, Differential Scanning , Cryoelectron Microscopy , Humans , Mutagenesis, Site-Directed , Protein Domains , Protein Stability , Protein Structure, Quaternary , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , SARS-CoV-2/isolation & purification , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Temperature
12.
J Biol Chem ; 297(4): 101208, 2021 10.
Article in English | MEDLINE | ID: covidwho-1415532

ABSTRACT

Emergence of new severe acute respiratory syndrome coronavirus 2 variants has raised concerns related to the effectiveness of vaccines and antibody therapeutics developed against the unmutated wildtype virus. Here, we examined the effect of the 12 most commonly occurring mutations in the receptor-binding domain of the spike protein on its expression, stability, activity, and antibody escape potential. Stability was measured using thermal denaturation, and the activity and antibody escape potential were measured using isothermal titration calorimetry in terms of binding to the human angiotensin-converting enzyme 2 and to neutralizing human antibody CC12.1, respectively. Our results show that mutants differ in their expression levels. Of the eight best-expressed mutants, two (N501Y and K417T/E484K/N501Y) showed stronger affinity to angiotensin-converting enzyme 2 compared with the wildtype, whereas four (Y453F, S477N, T478I, and S494P) had similar affinity and two (K417N and E484K) had weaker affinity than the wildtype. Compared with the wildtype, four mutants (K417N, Y453F, N501Y, and K417T/E484K/N501Y) had weaker affinity for the CC12.1 antibody, whereas two (S477N and S494P) had similar affinity, and two (T478I and E484K) had stronger affinity than the wildtype. Mutants also differ in their thermal stability, with the two least stable mutants showing reduced expression. Taken together, these results indicate that multiple factors contribute toward the natural selection of variants, and all these factors need to be considered to understand the evolution of the virus. In addition, since not all variants can escape a given neutralizing antibody, antibodies to treat new variants can be chosen based on the specific mutations in that variant.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , Antibodies, Neutralizing/immunology , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Angiotensin-Converting Enzyme 2/chemistry , Angiotensin-Converting Enzyme 2/genetics , Antigen-Antibody Reactions , COVID-19/pathology , COVID-19/virology , HEK293 Cells , Humans , Polymorphism, Single Nucleotide , Protein Binding , Protein Domains/genetics , Protein Stability , Protein Structure, Tertiary , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , SARS-CoV-2/isolation & purification , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Transition Temperature
13.
J Biol Chem ; 297(4): 101175, 2021 10.
Article in English | MEDLINE | ID: covidwho-1401575

ABSTRACT

The spike protein is the main protein component of the SARS-CoV-2 virion surface. The spike receptor-binding motif mediates recognition of the human angiotensin-converting enzyme 2 receptor, a critical step in infection, and is the preferential target for spike-neutralizing antibodies. Posttranslational modifications of the spike receptor-binding motif have been shown to modulate viral infectivity and host immune response, but these modifications are still being explored. Here we studied asparagine deamidation of the spike protein, a spontaneous event that leads to the appearance of aspartic and isoaspartic residues, which affect both the protein backbone and its charge. We used computational prediction and biochemical experiments to identify five deamidation hotspots in the SARS-CoV-2 spike protein. Asparagine residues 481 and 501 in the receptor-binding motif deamidate with a half-life of 16.5 and 123 days at 37 °C, respectively. Deamidation is significantly slowed at 4 °C, indicating a strong dependence of spike protein molecular aging on environmental conditions. Deamidation of the spike receptor-binding motif decreases the equilibrium constant for binding to the human angiotensin-converting enzyme 2 receptor more than 3.5-fold, yet its high conservation pattern suggests some positive effect on viral fitness. We propose a model for deamidation of the full SARS-CoV-2 virion illustrating how deamidation of the spike receptor-binding motif could lead to the accumulation on the virion surface of a nonnegligible chemically diverse spike population in a timescale of days. Our findings provide a potential mechanism for molecular aging of the spike protein with significant consequences for understanding virus infectivity and vaccine development.


Subject(s)
SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Amino Acid Motifs , Angiotensin-Converting Enzyme 2/chemistry , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/pathology , COVID-19/virology , Humans , Hydrogen-Ion Concentration , Interferometry , Kinetics , Protein Binding , Protein Domains , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , SARS-CoV-2/isolation & purification , Sequence Alignment , Spike Glycoprotein, Coronavirus/chemistry
14.
Int J Mol Sci ; 22(17)2021 Aug 26.
Article in English | MEDLINE | ID: covidwho-1374427

ABSTRACT

SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) is the causative agent of the COVID19 pandemic. The SARS-CoV-2 genome encodes for a small accessory protein termed Orf9b, which targets the mitochondrial outer membrane protein TOM70 in infected cells. TOM70 is involved in a signaling cascade that ultimately leads to the induction of type I interferons (IFN-I). This cascade depends on the recruitment of Hsp90-bound proteins to the N-terminal domain of TOM70. Binding of Orf9b to TOM70 decreases the expression of IFN-I; however, the underlying mechanism remains elusive. We show that the binding of Orf9b to TOM70 inhibits the recruitment of Hsp90 and chaperone-associated proteins. We characterized the binding site of Orf9b within the C-terminal domain of TOM70 and found that a serine in position 53 of Orf9b and a glutamate in position 477 of TOM70 are crucial for the association of both proteins. A phosphomimetic variant Orf9bS53E showed drastically reduced binding to TOM70 and did not inhibit Hsp90 recruitment, suggesting that Orf9b-TOM70 complex formation is regulated by phosphorylation. Eventually, we identified the N-terminal TPR domain of TOM70 as a second binding site for Orf9b, which indicates a so far unobserved contribution of chaperones in the mitochondrial targeting of the viral protein.


Subject(s)
COVID-19/transmission , Coronavirus Nucleocapsid Proteins/metabolism , HSP90 Heat-Shock Proteins/metabolism , Mitochondrial Membrane Transport Proteins/metabolism , SARS-CoV-2/pathogenicity , Animals , Binding Sites/genetics , COVID-19/immunology , COVID-19/virology , Chlorocebus aethiops , Coronavirus Nucleocapsid Proteins/genetics , Coronavirus Nucleocapsid Proteins/immunology , Coronavirus Nucleocapsid Proteins/isolation & purification , Humans , Interferon Type I/immunology , Interferon Type I/metabolism , Mitochondrial Membrane Transport Proteins/genetics , Mitochondrial Membrane Transport Proteins/isolation & purification , Mitochondrial Precursor Protein Import Complex Proteins , Mutation , Phosphoproteins/genetics , Phosphoproteins/immunology , Phosphoproteins/isolation & purification , Phosphoproteins/metabolism , Phosphorylation , Protein Binding/genetics , Protein Binding/immunology , Protein Domains/genetics , Recombinant Proteins/genetics , Recombinant Proteins/immunology , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , Vero Cells
15.
J Biol Chem ; 297(4): 101112, 2021 10.
Article in English | MEDLINE | ID: covidwho-1364203

ABSTRACT

S-acylation, also known as palmitoylation, is the most widely prevalent form of protein lipidation, whereby long-chain fatty acids get attached to cysteine residues facing the cytosol. In humans, 23 members of the zDHHC family of integral membrane enzymes catalyze this modification. S-acylation is critical for the life cycle of many enveloped viruses. The Spike protein of SARS-CoV-2, the causative agent of COVID-19, has the most cysteine-rich cytoplasmic tail among known human pathogens in the closely related family of ß-coronaviruses; however, it is unclear which of the cytoplasmic cysteines are S-acylated, and what the impact of this modification is on viral infectivity. Here we identify specific cysteine clusters in the Spike protein of SARS-CoV-2 that are targets of S-acylation. Interestingly, when we investigated the effect of the cysteine clusters using pseudotyped virus, mutation of the same three clusters of cysteines severely compromised viral infectivity. We developed a library of expression constructs of human zDHHC enzymes and used them to identify zDHHC enzymes that can S-acylate SARS-CoV-2 Spike protein. Finally, we reconstituted S-acylation of SARS-CoV-2 Spike protein in vitro using purified zDHHC enzymes. We observe a striking heterogeneity in the S-acylation status of the different cysteines in our in cellulo experiments, which, remarkably, was recapitulated by the in vitro assay. Altogether, these results bolster our understanding of a poorly understood posttranslational modification integral to the SARS-CoV-2 Spike protein. This study opens up avenues for further mechanistic dissection and lays the groundwork toward developing future strategies that could aid in the identification of targeted small-molecule modulators.


Subject(s)
COVID-19/pathology , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Acylation , Acyltransferases/genetics , Acyltransferases/metabolism , Amino Acid Sequence , COVID-19/virology , Cysteine/metabolism , HEK293 Cells , Humans , Lipoylation , Mutagenesis, Site-Directed , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , SARS-CoV-2/isolation & purification , Sequence Alignment , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Virus Internalization
16.
Sci Rep ; 11(1): 12410, 2021 06 14.
Article in English | MEDLINE | ID: covidwho-1268005

ABSTRACT

In situ generation of antibacterial and antiviral agents by harnessing the catalytic activity of enzymes on surfaces provides an effective eco-friendly approach for disinfection. The perhydrolase (AcT) from Mycobacterium smegmatis catalyzes the perhydrolysis of acetate esters to generate the potent disinfectant, peracetic acid (PAA). In the presence of AcT and its two substrates, propylene glycol diacetate and H2O2, sufficient and continuous PAA is generated over an extended time to kill a wide range of bacteria with the enzyme dissolved in aqueous buffer. For extended self-disinfection, however, active and stable AcT bound onto or incorporated into a surface coating is necessary. In the current study, an active, stable and reusable AcT-based coating was developed by incorporating AcT into a polydopamine (PDA) matrix in a single step, thereby forming a biocatalytic composite onto a variety of surfaces. The resulting AcT-PDA composite coatings on glass, metal and epoxy surfaces yielded up to 7-log reduction of Gram-positive and Gram-negative bacteria when in contact with the biocatalytic coating. This composite coating also possessed potent antiviral activity, and dramatically reduced the infectivity of a SARS-CoV-2 pseudovirus within minutes. The single-step approach enables rapid and facile fabrication of enzyme-based disinfectant composite coatings with high activity and stability, which enables reuse following surface washing. As a result, this enzyme-polymer composite technique may serve as a general strategy for preparing antibacterial and antiviral surfaces for applications in health care and common infrastructure safety, such as in schools, the workplace, transportation, etc.


Subject(s)
Anti-Bacterial Agents/chemistry , Antiviral Agents/chemistry , Bacterial Proteins/chemistry , Hydrolases/chemistry , Indoles/chemistry , Polymers/chemistry , Anti-Bacterial Agents/metabolism , Anti-Bacterial Agents/pharmacology , Antiviral Agents/metabolism , Antiviral Agents/pharmacology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , COVID-19/pathology , COVID-19/virology , Coated Materials, Biocompatible/chemistry , Coated Materials, Biocompatible/metabolism , Coated Materials, Biocompatible/pharmacology , Drug Stability , Gram-Negative Bacteria/drug effects , Gram-Positive Bacteria/drug effects , Humans , Hydrolases/genetics , Hydrolases/metabolism , Kinetics , Mycobacterium smegmatis/enzymology , Peracetic Acid/metabolism , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , SARS-CoV-2/drug effects
17.
PLoS One ; 16(6): e0251955, 2021.
Article in English | MEDLINE | ID: covidwho-1262543

ABSTRACT

Newly emerged SARS-CoV-2 is the cause of an ongoing global pandemic leading to severe respiratory disease in humans. SARS-CoV-2 targets epithelial cells in the respiratory tract and lungs, which can lead to amplified chloride secretion and increased leak across epithelial barriers, contributing to severe pneumonia and consolidation of the lungs as seen in many COVID-19 patients. There is an urgent need for a better understanding of the molecular aspects that contribute to SARS-CoV-2-induced pathogenesis and for the development of approaches to mitigate these damaging pathologies. The multifunctional SARS-CoV-2 Envelope (E) protein contributes to virus assembly/egress, and as a membrane protein, also possesses viroporin channel properties that may contribute to epithelial barrier damage, pathogenesis, and disease severity. The extreme C-terminal (ECT) sequence of E also contains a putative PDZ-domain binding motif (PBM), similar to that identified in the E protein of SARS-CoV-1. Here, we screened an array of GST-PDZ domain fusion proteins using either a biotin-labeled WT or mutant ECT peptide from the SARS-CoV-2 E protein. Notably, we identified a singular specific interaction between the WT E peptide and the second PDZ domain of human Zona Occludens-1 (ZO1), one of the key regulators of TJ formation/integrity in all epithelial tissues. We used homogenous time resolve fluorescence (HTRF) as a second complementary approach to further validate this novel modular E-ZO1 interaction. We postulate that SARS-CoV-2 E interacts with ZO1 in infected epithelial cells, and this interaction may contribute, in part, to tight junction damage and epithelial barrier compromise in these cell layers leading to enhanced virus spread and severe dysfunction that leads to morbidity. Prophylactic/therapeutic intervention targeting this virus-host interaction may effectively reduce airway and/or gastrointestinal barrier damage and mitigate virus spread.


Subject(s)
COVID-19/metabolism , COVID-19/virology , Coronavirus Envelope Proteins/metabolism , SARS-CoV-2/metabolism , Zonula Occludens-1 Protein/metabolism , COVID-19/pathology , Host-Pathogen Interactions , Humans , PDZ Domains , Protein Binding , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , SARS-CoV-2/isolation & purification , Tight Junctions/metabolism
18.
Epidemiol Infect ; 149: e140, 2021 06 08.
Article in English | MEDLINE | ID: covidwho-1260913

ABSTRACT

The novel coronavirus, severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2), is the causative agent of the 2020 worldwide coronavirus pandemic. Antibody testing is useful for diagnosing historic infections of a disease in a population. These tests are also a helpful epidemiological tool for predicting how the virus spreads in a community, relating antibody levels to immunity and for assessing herd immunity. In the present study, SARS-CoV-2 viral proteins were recombinantly produced and used to analyse serum from individuals previously exposed, or not, to SARS-CoV-2. The nucleocapsid (Npro) and spike subunit 2 (S2Frag) proteins were identified as highly immunogenic, although responses to the former were generally greater. These two proteins were used to develop two quantitative enzyme-linked immunosorbent assays (ELISAs) that when used in combination resulted in a highly reliable diagnostic test. Npro and S2Frag-ELISAs could detect at least 10% more true positive coronavirus disease-2019 (COVID-19) cases than the commercially available ARCHITECT test (Abbott). Moreover, our quantitative ELISAs also show that specific antibodies to SARS-CoV-2 proteins tend to wane rapidly even in patients who had developed severe disease. As antibody tests complement COVID-19 diagnosis and determine population-level surveillance during this pandemic, the alternative diagnostic we present in this study could play a role in controlling the spread of the virus.


Subject(s)
COVID-19 Serological Testing/methods , COVID-19/diagnosis , Coronavirus Nucleocapsid Proteins/immunology , SARS-CoV-2/isolation & purification , Spike Glycoprotein, Coronavirus/immunology , Adult , Aged , Antibodies, Viral/blood , Coronavirus Nucleocapsid Proteins/genetics , Coronavirus Nucleocapsid Proteins/isolation & purification , Enzyme-Linked Immunosorbent Assay , Female , Humans , Immunoglobulin G/blood , Kinetics , Male , Middle Aged , Phosphoproteins/genetics , Phosphoproteins/immunology , Phosphoproteins/isolation & purification , Recombinant Proteins/genetics , Recombinant Proteins/immunology , Recombinant Proteins/isolation & purification , SARS-CoV-2/immunology , Sensitivity and Specificity , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/isolation & purification
19.
Biochem Biophys Res Commun ; 563: 92-97, 2021 07 23.
Article in English | MEDLINE | ID: covidwho-1248814

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes coronavirus disease 2019 (COVID-19), has the characteristic accessory protein ORF8. Although clinical reports indicate that ORF8 variant strains (Δ382 and L84S variants) are less likely to cause severe illness, functional differences between wild-type and variant ORF8 are unknown. Furthermore, the physicochemical properties of the ORF8 protein have not been analyzed. In this study, the physicochemical properties of the wild-type ORF8 and its L84S variant were analyzed and compared. Using the tobacco BY-2 cell production system, which has been successfully used to produce the wild-type ORF8 protein with a single conformation, was used to successfully produce the ORF8 L84S variant protein at the same level as wild-type ORF8. The produced proteins were purified, and their temperature and pH dependencies were examined using nuclear magnetic resonance spectra. Our data suggested that the wild-type and L84S variant ORF8 structures are highly stable over a wide temperature range. Both proteins displayed an aggregated conformation at higher temperature that reverted when the temperature was decreased to room temperature. Moreover, ORF8 precipitated at acidic pH and this precipitation was reversed when the solution pH was shifted to neutral. Interestingly, the L84S variant exhibited greater solubility than wild-type ORF8 under acidic conditions. Thus, the finding indicated that conformational stability and reversibility of ORF8 are key properties related to function in oppressive environments.


Subject(s)
COVID-19/virology , SARS-CoV-2/chemistry , Viral Proteins/chemistry , COVID-19/metabolism , COVID-19/pathology , Humans , Molecular Conformation , Mutation , Nuclear Magnetic Resonance, Biomolecular/methods , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , SARS-CoV-2/isolation & purification , SARS-CoV-2/metabolism , Structure-Activity Relationship , Viral Proteins/genetics , Viral Proteins/metabolism
20.
Protein Expr Purif ; 186: 105908, 2021 10.
Article in English | MEDLINE | ID: covidwho-1243167

ABSTRACT

The current standard for the diagnosis of COVID-19 is the nucleic acid test of SARS-CoV-2 RNA, however, virus antibody detection has the advantages of convenient sample collection, high throughout, and low cost. When combining detection with nucleic acid detection, antibody detection can effectively compensate for nucleic acid detection. Virus infection always induce high antibody titer against SARS-CoV-2 nucleocapsid protein (N protein), which can be used to detect COVID-19 at both infected and convalescent patients. In this study we reported the expression and purification of N protein in E.coli from inclusion bodies by a combination of two cation exchange chromatography, and the yield of N protein was around 50 mg/L fermentation broth with more than 90% purity. A corresponding colloidal gold detection kit prepared with our purified N protein was used to verify the efficiency and accuracy our N protein in antibody detection method. Of the 58 COVID-19 PCR positive patients' inactivated serum samples, 40 samples were IgM positive (69.0%), and 42 samples were IgG positive (72.4%), and all 95 COVID-19 negative patients' inactivated serum samples were both IgM and IgG negative. Our results indicates that the refolded soluble N protein could be used for the preliminary detection of IgG and IgM antibodies against SARS-CoV- 2.


Subject(s)
Antibodies, Viral/blood , COVID-19 Serological Testing/methods , Coronavirus Nucleocapsid Proteins/genetics , Coronavirus Nucleocapsid Proteins/immunology , SARS-CoV-2/immunology , Coronavirus Nucleocapsid Proteins/biosynthesis , Coronavirus Nucleocapsid Proteins/isolation & purification , Escherichia coli/genetics , Humans , Immunoglobulin G/blood , Immunoglobulin M/blood , Inclusion Bodies , Phosphoproteins/biosynthesis , Phosphoproteins/genetics , Phosphoproteins/immunology , Phosphoproteins/isolation & purification , Recombinant Proteins/biosynthesis , Recombinant Proteins/immunology , Recombinant Proteins/isolation & purification , SARS-CoV-2/genetics , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL